56 research outputs found

    Footprint-weighted tile approach for a spruce forest and a nearby patchy clearing using the ACASA model

    Get PDF
    The ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) model, with a higher-order closure for tall vegetation, has already been successfully tested and validated for homogeneous spruce forests. The aim of this paper is to test the model using a footprint-weighted tile approach for a clearing with a heterogeneous structure of the underlying surface. The comparison with flux data shows a good agreement with a footprint-aggregated tile approach of the model. However, the results of a comparison with a tile approach on the basis of the mean land use classification of the clearing is not significantly different. It is assumed that the footprint model is not accurate enough to separate small-scale heterogeneities. All measured fluxes are corrected by forcing the energy balance closure of the test data either by maintaining the measured Bowen ratio or by the attribution of the residual depending on the fractions of sensible and latent heat flux to the buoyancy flux. The comparison with the model, in which the energy balance is closed, shows that the buoyancy correction for Bowen ratios > 1.5 better fits the measured data. For lower Bowen ratios, the correction probably lies between the two methods, but the amount of available data was too small to make a conclusion. With an assumption of similarity between water and carbon dioxide fluxes, no correction of the net ecosystem exchange is necessary for Bowen ratios > 1.5

    Il Modello ACASA per la stima degli scambi di carbonio negli ecosistemi mediterranei

    Get PDF
    L’attività di ricerca finalizzata allo sviluppo e alla validazione di modellistica avanzata per la contabilizzazione del bilancio del carbonio nei sistemi agrari e forestali nasce da una intensa collaborazione con l’Università della California. In particolare è in fase di studio il modello ACASA (Advanced Canopy-Atmosphere-Soil Algorithm), che è attualmente uno dei modelli del tipo soil-vegetation-atmosphere transfer (SVAT) più sofisticati. ACASA contiene equazioni differenziali di terzo ordine per simulare i flussi di energia e materia nella canopy (10 strati atmosferici all’interno e 10 al di sopra), mentre il suolo è suddiviso in 15 strati. Una combinazione delle equazioni di Ball-Berry e Farquhar è utilizzata per stimare il flusso di CO2. Il modello considera gli effetti dello stress idrico sulla traspirazione e sull’assimilazione della vegetazione

    Advanced-Canopy-Atmosphere-Soil Algorithm (ACASA model) for estimating mass and energy fluxes

    Get PDF
    There is a recognized need to improve land surface models that simulate mass and energy fluxes between terrestrial ecosystems and atmosphere. In particular, long-term land planning strategies at local and regional scales require better understanding of agricultural ecosystem capacity to exchange CO2 and water. One of the more elaborate models for flux modelling is the Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) model (Pyles et al., 2000), which provides micro-scale and regional-scale fluxes. The ACASA model allows for characterization of energy and carbon fluxes. It is a higher-order closure model used to estimate fluxes and profiles of heat, water vapor, carbon and momentum within and above canopy using third-order closure equations. It also estimates turbulent profiles of velocity, temperature, humidity within and above canopy. The ACASA model estimates CO2 fluxes using a combination of Ball-Berry and Farquhar equations. In addition, the effects of water stress on stomata, transpiration and CO2 assimilation are considered. The model was mainly used over dense canopies (Pyles et al. 2000, 2003) in the past, so the aim of this work was to test the ACASA model over a sparse canopy for estimating mass and energy fluxes, comparing model output with field measurements taken over a vineyard located in Montalcino, Tuscany, Italy

    Global parameterization and validation of a two-leaf light use efficiency model for predicting gross primary production across FLUXNET sites:TL-LUE Parameterization and Validation

    Get PDF
    Light use efficiency (LUE) models are widely used to simulate gross primary production (GPP). However, the treatment of the plant canopy as a big leaf by these models can introduce large uncertainties in simulated GPP. Recently, a two-leaf light use efficiency (TL-LUE) model was developed to simulate GPP separately for sunlit and shaded leaves and has been shown to outperform the big-leaf MOD17 model at six FLUX sites in China. In this study we investigated the performance of the TL-LUE model for a wider range of biomes. For this we optimized the parameters and tested the TL-LUE model using data from 98 FLUXNET sites which are distributed across the globe. The results showed that the TL-LUE model performed in general better than the MOD17 model in simulating 8 day GPP. Optimized maximum light use efficiency of shaded leaves (εmsh) was 2.63 to 4.59 times that of sunlit leaves (εmsu). Generally, the relationships of εmsh and εmsu with εmax were well described by linear equations, indicating the existence of general patterns across biomes. GPP simulated by the TL-LUE model was much less sensitive to biases in the photosynthetically active radiation (PAR) input than the MOD17 model. The results of this study suggest that the proposed TL-LUE model has the potential for simulating regional and global GPP of terrestrial ecosystems, and it is more robust with regard to usual biases in input data than existing approaches which neglect the bimodal within-canopy distribution of PAR

    Aircraft Regional-Scale Flux Measurements over Complex Landscapes of Mangroves, Desert, and Marine Ecosystems of Magdalena Bay, Mexico

    Get PDF
    Natural ecosystems are rarely structurally simple or functionally homogeneous. This is true for the complex coastal region of Magdalena Bay, Baja California Sur, Mexico, where the spatial variability in ecosystem fluxes from the Pacific coastal ocean, eutrophic lagoon, mangroves, and desert were studied. The Sky Arrow 650TCN environmental research aircraft proved to be an effective tool in characterizing land–atmosphere fluxes of energy, CO2, and water vapor across a heterogeneous landscape at the scale of 1 km. The aircraft was capable of discriminating fluxes from all ecosystem types, as well as between nearshore and coastal areas a few kilometers distant. Aircraft-derived average midday CO2 fluxes from the desert showed a slight uptake of −1.32 μmol CO2 m−2 s−1, the coastal ocean also showed an uptake of −3.48 μmol CO2 m−2 s−1, and the lagoon mangroves showed the highest uptake of −8.11 μmol CO2 m−2 s−1. Additional simultaneous measurements of the normalized difference vegetation index (NDVI) allowed simple linear modeling of CO2 flux as a function of NDVI for the mangroves of the Magdalena Bay region. Aircraft approaches can, therefore, be instrumental in determining regional CO2 fluxes and can be pivotal in calculating and verifying ecosystem carbon sequestration regionally when coupled with satellite-derived products and ecosystem models

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Peer reviewe

    Coherent turbulent structures: implications for plant biometeorology

    No full text
    International audienc
    corecore